最新澳门网址大全

最新澳门网址大全

 

  • 首页
  • 最新澳门网址大全
    • 学院介绍
    • 学院领导
    • 岗位职责
    • 学术机构
    • 行政机构
  • 新闻动态
    • 全部新闻
    • 学院动态
    • 科研学术
    • 人才培养
    • 学生工作
    • 党政党务
    • 招生动态
    • 就业信息
    • 通知公告
    • 国际交流
    • 院网公告
    • 工会工作
  • 师资队伍
    • 学术带头人
    • 博士生导师
    • 硕士生导师
    • 学院老教师
    • 全体教师
  • 研究生之窗
    • 全部新闻
    • 研究生招生
    • 研究生培养
    • 研究生学位
    • 研究生管理
    • 在职工程硕士
  • 本科生之窗
    • 本科新闻
    • 教务信息
    • 科技实践
    • 学工信息
    • 学工信箱
    • 表格下载
  • 规章制度
    • 学校制度
    • 学院制度
  • 党政党建
    • 党政党建
    • 党风廉政
    • 工会名单
  • 国际交流
  • 采购公示
    • 采购公示
  • 联系我们
    • 联系我们
    • 网上报名

新闻动态

全部新闻 学院动态 科研学术 人才培养 学生工作 党政党务 招生动态 就业信息 通知公告 国际交流 院网公告 工会工作

您当前的位置: 首页 > 新闻动态 > 通知公告

学术报告通知:Nanomaterials Playground: Magnetic Skyrmions, Magneto-Ionics and Metal Foams

发布人:聂天晓 发布时间:2017-12-13

时间:2017年12月15日  上午10点                                                    

地点:新主楼F706.

摘要:Nanomaterials Playground: Magnetic Skyrmions, Magneto-Ionics and Metal Foams      

 

Kai Liu    

Physics Department, University of California, Davis, CA 95616            

Nanomaterials offer an exciting platform to address grand challenges in the post-Moore’s law era. In this talk I will illustrate some of our current efforts. For example, in recently discovered magnetic skyrmions, mostly at low temperatures, the unique spin texture and the topologically protected quantum state offer great potentials for low dissipation magnetic information storage. We have demonstrated the realization of artificial Bloch skyrmion lattices, as well as planar skyrmion lattices, in their ground state at room temperature [1]. In a second area, we have demonstrated effective magneto-ionic manipulation of metal/oxide interfaces due to a redox-driven oxygen migration, manifested through the interface-sensitive exchange bias effect [2] and controllable under an electric field [3]. Similar effects are also found in getter-metal/perovskites, where the ferromagnetism is sensitively moderated by O-migration [4]. More recently, we have achieved ultra-lightweight palladium nanowire foams that exhibit highly attractive characteristics for hydrogen storage [5].                    

1. Nature Communications 6, 8462, (2015).            

2. Nature Communications 7, 11050 (2016).            

3. Nature Communications 7, 12264 (2016).            

4. Appl. Phys. Lett. 108, 082405 (2016).            

5. Chem. Mater. DOI:10.1021/acs.chemmater.7b03978 (2017).  

 

简介:

Prof. Kai Liu received his Ph.D. degree from the John Hopkins University in 1998. In 2001, he jointed into the University of California, Davis as an assistant professor. In 2008, he became the full professor. Until now, he has received lots of honors, including IEEE Fellow and APS Fellow, etc. His research interest is in experimental studies of nanostructured materials for nanomagnetism, spin-transport, and advanced energy explorations. Due to their intricate nanostructures, extremely small length scales, rich surfaces and interfaces, low dimensionality, and interplay among constituents, nanostructured materials often exhibit new and enhanced properties over their bulk counterparts. Additionally, these novel properties can be tailored through extra degrees of freedom, such as structure and material. Professor Liu is particularly interested in magnetic nanostructures where the electron spin coherence may be preserved and exploited, providing a spin-based vision for electronics of the future. This is of critical importance as downscaling of CMOS-based devices face huge uncertainties regarding power consumption and dissipation, resulting in a catastrophic power crisis that has stalled progress across all scales. Spin-based applications represent potentially paradigm-shifting innovations and transformative opportunities that can address the grand challenges of our time.    

 

 

 

友情链接:学院老网站   北航校网站  财务处网站  北航邮箱

版权所有:最新澳门网址大全-澳门网址网站导航大全 联系管理员